Understanding Radar Range Calculation
The maximum radar range is determined by the radar equation:
\[
R_{\text{max}} = \left( \frac{P_t \cdot G^2 \cdot \sigma}{(4\pi)^3 \cdot P_{\text{min}}} \right)^{1/4}
\]
Where:
- Rmax: Maximum radar range (meters)
- Pt: Transmitter power (W)
- G: Antenna gain
- σ: Radar cross section of the target (m²)
- Pmin: Minimum detectable power (W)
Example Calculations
Example 1: Air Traffic Control Radar
- Transmitter Power (\(P_t\)): 1000 W
- Antenna Gain (\(G\)): 10000 (40 dB)
- Radar Cross Section (\(σ\)): 1 m²
- Minimum Detectable Power (\(P_{\text{min}}\)): \(10^{-13}\) W
Steps:
- Using the radar range equation:
\[
R_{\text{max}} = \left( \frac{1000 \cdot (10000)^2 \cdot 1}{(4\pi)^3 \cdot 10^{-13}} \right)^{1/4}
\]
- Simplify:
\[
R_{\text{max}} = \left( \frac{10^{11}}{6.3617 \cdot 10^{-9}} \right)^{1/4} \approx 240,000 \, \text{m}
\]
Result: The maximum radar range is approximately 240 km.
Example 2: Long-Range Radar
- Transmitter Power (\(P_t\)): 5000 W
- Antenna Gain (\(G\)): 20000 (43 dB)
- Radar Cross Section (\(σ\)): 5 m²
- Minimum Detectable Power (\(P_{\text{min}}\)): \(10^{-14}\) W
Steps:
- Using the radar range equation:
\[
R_{\text{max}} = \left( \frac{5000 \cdot (20000)^2 \cdot 5}{(4\pi)^3 \cdot 10^{-14}} \right)^{1/4}
\]
- Simplify:
\[
R_{\text{max}} = \left( \frac{2 \cdot 10^{14}}{6.3617 \cdot 10^{-9}} \right)^{1/4} \approx 562,000 \, \text{m}
\]
Result: The maximum radar range is approximately 562 km.
Factors Affecting Radar Range
- Transmitter Power: Higher transmitter power increases the range.
- Antenna Gain: Better focusing of energy through higher gain extends range.
- Target Radar Cross Section (RCS): Larger targets reflect more energy and are detectable at greater distances.
- Receiver Sensitivity: A lower minimum detectable power (Pmin) allows detection of weaker signals, improving range.