Current Divider Calculator
Current Divider Principle
In a parallel circuit, the total current divides inversely proportional to the resistance of each branch. The formula is:
\[ I_R = I_{\text{Total}} \cdot \frac{R_{\text{Total}}}{R_i} \]
Where:
- \(I_R\): Current through a specific resistor
- \(I_{\text{Total}}\): Total circuit current
- \(R_{\text{Total}}\): Total equivalent resistance
- \(R_i\): Resistance of the specific resistor
Example 1
Given:
- \(I_{\text{Total}} = 10 \, \text{mA}\)
- \(R_1 = 100 \, \Omega\), \(R_2 = 200 \, \Omega\)
Calculation:
Total resistance of the parallel network:
\[ R_{\text{Total}} = \frac{1}{\frac{1}{R_1} + \frac{1}{R_2}} = \frac{1}{\frac{1}{100} + \frac{1}{200}} = 66.67 \, \Omega \]Current through \(R_1\):
\[ I_1 = 10 \, \text{mA} \cdot \frac{66.67}{100} = 6.67 \, \text{mA} \]Current through \(R_2\):
\[ I_2 = 10 \, \text{mA} \cdot \frac{66.67}{200} = 3.33 \, \text{mA} \]Example 2
Given:
- \(I_{\text{Total}} = 5 \, \text{A}\)
- \(R_1 = 50 \, \Omega\), \(R_2 = 100 \, \Omega\), \(R_3 = 200 \, \Omega\)
Calculation:
Total resistance of the parallel network:
\[ R_{\text{Total}} = \frac{1}{\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}} = \frac{1}{\frac{1}{50} + \frac{1}{100} + \frac{1}{200}} = 28.57 \, \Omega \]Current through \(R_1\):
\[ I_1 = 5 \, \text{A} \cdot \frac{28.57}{50} = 2.86 \, \text{A} \]Current through \(R_2\):
\[ I_2 = 5 \, \text{A} \cdot \frac{28.57}{100} = 1.43 \, \text{A} \]Current through \(R_3\):
\[ I_3 = 5 \, \text{A} \cdot \frac{28.57}{200} = 0.71 \, \text{A} \]